Wednesday, January 28, 2009

never hurt women..

humm..dah hampir 2 minggu ga mengunjungi blog ..apalagi nulis.
abis..sibuk YM terus neh ama keluarga surabaya.
bawaannya kangen terus..pengen pulang surabaya.
lagian disini (jkt) juga tidak ada yang bisa diharapkan.
tapi untunglah ada "pyo"..
bikin gw semangat di sisa-sisa kehampaan..(ciee..kehampaan.hahah)

gw barusan baca dari email seseorang siy..
jadi terbawa kemana2 pikiran..melayang jauh
mulai dari putri salju sampe cewe2 yang sekarang lagi berebutan jadi caleg
lucu juga..namun ada satu benang merah disitu..
benang merah?..masih kuning kalee..

begini nih :

wanita adalah wanita...,
jika dikatakan cantik maka dikira menggoda..,
wanita adalah wanita...,
jika dibilang jelek maka disangka menghina..,

jika dikatakan ia perhiasan terindah didunia ia bangga,
jika apapun "perhiasan yg berharga" itu layak ditutupi dan disembunyikan
ia setuju..(supaya terjaga)
tapi bila disuruh menutup "perhiasannya/kecantikannya" maka dia enggan...,
dan bila dilecehkan ia menyalahkan sepenuhnya pria..!

wanita adalah wanita...,
jika dikatakan siapa yg paling dibanggakan olehnya,
kebanyakan bilang "ibunya".
tapi kenapa ya..lebih bangga jadi wanita karier..
(padahal ibunya "ibu rumah tangga")

wanita ....
bila diluruskan supaya bener memerah mukanya,
(marah, sambil bilang "sok bener lo!")
bila diingetin tetep memerah mukanya,
(marah juga rupanya, sambil bilang "sok tau lo!")
bila dimanja dan disanjung..?? eh, tetep memerah mukanya
(kali ini tersipu malu, sambil bilang "ah, masa?")

wanita adalah wanita...,
inginnya dibilang emansipasi..tapi kegerahan dibilang "macho",
maunya disamakan dg pria..tapi menolak benerin genteng rumah!
(sambil bilang, "masa disamakan sama cowok!?")

Wanita...,
bila dibilang lemah dia protes...
jika pacarnya tidak mau antar pulang dia bilang keterlaluan,
maunya diperlakukan sama dg pria..
tapi kesel nggak dikasih tempat duduk di bis kota oleh pria disampingnya
(dan bilang "egois amat ni cowok?")
bila dikatakan kuat itu maunya..
tapi bila sedikit bersedih ia cepet menangis...

tapi....
Wanita adalah wanita...
dan wanita bukan perempuan atau cewek semata...,
tapi bagaimanapun juga aku suka wanita! (swear..) hehe.

Dan benang merah nya adalah:
justru sebenarnya kekuatan wanita itu adalah ketika dia telah menjadi wanita itu sendiri.
jgn pernah mencoba mengambil porsi yang bukan porsi wanita.
karena wanita akan selalu dihormati, disanjung, bahkan disayang
ketika dia sudah benar2 menjadikan dirinya sebagai seorang wanita.

so..emansipasi??
humm..i think it's just a wordy.


design do not stop !
BUDS'

Thursday, January 15, 2009

Types of Forging processes

nih..aku sharing lagi artikel tentang forging.
kebetulan gw kerja di bisnis otomotif dan bergerak di bidang forging.
tapi untuk sementara yg aku dapet siy artikel english version.
gpp yaks...
sekali lagi..enjoy n learning now !!

What are the types of forging processes?
There are basically three methods (or processes) to make a forged part.

1. Impression Die Forging
2. Cold Forging
3. Open Die Forging
4. Seamless Rolled Ring Forging


Impression Die Forging
Impression die forging pounds or presses metal between two dies (called tooling) that contain a precut profile of the desired part. Parts from a few ounces to 60,000 lbs. can be made using this process. Some of the smaller parts are actually forged cold.

PROCESS OPERATIONS
Graphical depiction of process steps.

PROCESS CAPABILITIES

Commonly referred to as closed-die forging, impression-die forging of steel, aluminum, titanium and other alloys can produce an almost limitless variety of 3-D shapes that range in weight from mere ounces up to more than 25 tons. Impression-die forgings are routinely produced on hydraulic presses, mechanical presses and hammers, with capacities up to 50,000 tons, 20,000 tons and 50,000 lbs. respectively.

As the name implies, two or more dies containing impressions of the part shape are brought together as forging stock undergoes plastic deformation. Because metal flow is restricted by the die contours, this process can yield more complex shapes and closer tolerances than open-die forging processes. Additional flexibility in forming both symmetrical and non- symmetrical shapes comes from various performing operations (sometimes bending) prior to forging in finisher dies.

Part geometry's range from some of the easiest to forge simple spherical shapes, block-like rectangular solids, and disc-like configurations to the most intricate components with thin and long sections that incorporate thin webs and relatively high vertical projections like ribs and bosses. Although many parts are generally symmetrical, others incorporate all sorts of design elements (flanges, protrusions, holes, cavities, pockets, etc.) that combine to make the forging very non-symmetrical. In addition, parts can be bent or curved in one or several planes, whether they are basically longitudinal, equidimensional or flat.


Most engineering metals and alloys can be forged via conventional impression-die processes, among them: carbon and alloy steels, tool steels, and stainless, aluminum and copper alloys, and certain titanium alloys. Strain-rate and temperature-sensitive materials (magnesium, highly alloyed nickel-based super alloys, refractory alloys and some titanium alloys) may require more sophisticated forging processes and/or special equipment for forging in impression dies.


Cold Forging
Most forging is done as hot work, at temperatures up to 2300 degrees F, however, a variation of impression die forging is cold forging. Cold forging encompasses many processes -- bending, cold drawing, cold heading, coining, extrusions and more, to yield a diverse range of part shapes. The temperature of metals being cold forged may range from room temperature to several hundred degrees.

PROCESS CAPABILITIES
Cold forging encompasses many processes bending, cold drawing, cold heading, coining, extrusion, punching, thread rolling and more to yield a diverse range of part shapes. These include various shaft-like components, cup-shaped geometry's, hollow parts with stems and shafts, all kinds of upset (headed) and bent configurations, as well as combinations.

Most recently, parts with radial flow like round configurations with center flanges, rectangular parts, and non-ax symmetric parts with 3- and 6-fold symmetry have been produced by warm extrusion. With cold forging of steel rod, wire, or bar, shaft-like parts with 3-plane bends and headed design features are not uncommon.

Typical parts are most cost-effective in the range of 10 lbs. or less; symmetrical parts up to 7 lbs. readily lend themselves to automated processing. Material options range form lower-alloy and carbon steels to 300 and 400 series stainless, selected aluminum alloys, brass and bronze.

There are times when warm forging practices are selected over cold forging especially for higher carbon grades of steel or where in-process anneals can be eliminated.

Often chosen for integral design features such as built-in flanges and bosses, cold forgings are frequently used in automotive steering and suspension parts, antilock-braking systems, hardware, defense components, and other applications where high strength, close tolerances and volume production make them an economical choice.

In the process, a chemically lubricated bar slug is forced into a closed die under extreme pressure. The unheated metal thus flows into the desired shape. As shown, forward extrusion involves steel flow in the direction of the ram force. It is used when the diameter of the bar is to be decreased and the length increased. Backward extrusion, where the metal flows opposite to the ram force, generates hollow parts. In upsetting, the metal flows at right angles to the ram force, increasing diameter and reducing length.


Open Die Forging
Open die forging is performed between flat dies with no precut profiles is the dies. Movement of the work piece is the key to this method. Larger parts over 200,000 lbs. and 80 feet in length can be hammered or pressed into shape this way.

PROCESS CAPABILITIES
Open-die forging can produce forgings from a few pounds up to more than 150 tons. Called open-die because the metal is not confined laterally by impression dies during forging, this process progressively works the starting stock into the desired shape, most commonly between flat-faced dies. In practice, open-die forging comprises many process variations, permitting an extremely broad range of shapes and sizes to be produced. In fact, when design criteria dictate optimum structural integrity for a huge metal component, the sheer size capability of open-die forging makes it the clear process choice over non-forging alternatives. At the high end of the size range, open-die forgings are limited only by the size of the starting stock, namely, the largest ingot that can be cast.

Practically all forgeable ferrous and non-ferrous alloys can be open-die forged, including some exotic materials like age-hardening super alloys and corrosion-resistant refractory alloys.

Open-die shape capability is indeed wide in latitude. In addition to round, square, rectangular, hexagonal bars and other basic shapes, open-die processes can produce:

* Step shafts solid shafts (spindles or rotors) whose diameter increases or decreases (steps down) at multiple locations along the longitudinal axis.
* Hollows cylindrical in shape, usually with length much greater than the diameter of the part. Length, wall thickness, ID and OD can be varied as needed.
* Ring-like parts can resemble washers or approach hollow cylinders in shape, depending on the height/wall thickness ratio.
* Contour-formed metal shells like pressure vessels, which may incorporate extruded nozzles and other design features.

Not unlike successive forging operations in a sequence of dies, multiple open-die forging operations can be combined to produce the required shape. At the same time, these forging methods can be tailored to attain the proper amount of total deformation and optimum grain-flow structure, thereby maximizing property enhancement and ultimate performance for a particular application. Forging an integral gear blank and hub, for example, may entail multiple drawing or solid forging operations, then upsetting. Similarly, blanks for rings may be prepared by upsetting an ingot, then piercing the center, prior to forging the ring.















Seamless Rolled Ring Forging
Seamless rolled ring forging is typically performed by punching a hole in a thick, round piece of metal (creating a donut shape), and then rolling and squeezing (or in some cases, pounding) the donut into a thin ring. Ring diameters can be anywhere from a few inches to 30 feet.

PROCESS CAPABILITIES
Rings forged by the seamless ring rolling process can weigh

Seamless ring configurations can be flat (like a washer), or feature higher vertical walls (approximating a hollow cylindrical section). Heights of rolled rings range from less than an inch up to more than 9 ft. Depending on the equipment utilized, wall-thickness/height ratios of rings typically range from 1:16 up to 16:1, although greater proportions have been achieved with special processing. In fact, seamless tubes up to 48-in. diameter and over 20-ft long are extruded on 20 to 30,000-ton forging presses.

Even though basic shapes with rectangular cross-sections are the norm, rings featuring complex, functional cross- sections can be forged to meet virtually any design requirements. Aptly named, these contoured rolled rings can be produced in thousands of different shapes with contours on the inside and/or outside diameters. A key advantage to contoured rings is a significant reduction in machining operations. Not surprisingly, custom-contoured rings can result in cost-saving part consolidations. Compared to flat-faced seamless rolled rings, maximum dimensions (face heights and O.D.’s) of contoured rolled rings are somewhat lower, but are still very impressive in size.

High tangential strength and ductility make forged rings well-suited for torque- and pressure-resistant components, such as gears, engine bearings for aircraft, wheel bearings, couplings, rotor spacers, sealed discs and cases, flanges, pressure vessels and valve bodies. Materials include not only carbon and alloy steels, but also non-ferrous alloys of aluminum, copper and titanium, as well as nickel-base alloys.











Impression Die Forging
Process Operations

In the simplest example of impression die forging, two dies are brought together and the workpiece undergoes plastic deformation until its enlarged sides touch the side walls of the die. Then, a small amount of material begins to flow outside the die impression forming flash that is gradually thinned. The flash cools rapidly and presents increased resistance to deformation and helps build up pressure increased resistance to deformation and helps build up pressure inside the bulk of the workpiece that aids material flow into unfilled impressions.











Upsetting
Fundamentally, impression die forgings produced on horizontal forging machines (upsetters) are similar to those produced by hammers or presses. Each is the result of forcing metal into cavities in dies which separate at parting lines.











The impression in the ram-operated "heading tool" is the equivalent of a hammer or press top die. The "grip dies" contain the impressions corresponding to the hammer or press bottom die. Grip dies consist of a stationary die and a moving die which, when closed, act to grip the stock and hold it in position for forging. After each workstroke of the machine, these dies permit the transfer of stock from one cavity to another in the multiple-impression dies.



Cold Forging
Process Operations

1. Forward extrusion reduces slug diameter and increases its length to produce parts such as stepped shafts and cylinders.


2. In backward extrusion, the steel flows back and around the descending punch to form cup-shaped pieces.


3. Upsetting, or heading, a common technique for making fasteners, gathers steel in the head and other sections along the length of the part






SHAFTS



1. Starting stock, held by manipulator.

2. Open-die forging.

3. Progressive forging.

4. Lathe turning to near net-shape.




DISCS



1. Starting stock.

2. Preliminary upsetting.

3. Progressive upsetting/
forging to disc dimensions.

4. Pierced for saddle/mandrel
ring hollow "sleeve type" preform.




SADDLE/MANDREL RINGS



1. Preform mounted on saddle/mandrel.

2. Metal displacement-reduce preform wall thickness to increase diameter.

3. Progressive reduction of wall thickness to produce ring dimensions.

4. Matching to near net shape.





HOLLOW "SLEEVE TYPE" FORGING


1. Punched or trepanned disc on apered draw bar.


2. Progressive reduction of outside diameter (inside diameter remains constant) increases overall length of sleeve.



Seamless Rolled Ring Forging
Process Operations




1. The ring rolling process typically begins with upsetting of the starting stock on flat dies at its plastic deformation temperature - in the case of grade 1020 steel, approximately 2200 degrees Fahrenheit.



2. Piercing involves forcing a punch into the hot upset stock causing metal to be displaced radially, as shown by the illustration.


3. A subsequent operation, shearing, serves to remove the small punchout ...


4. ...producing a completed hole through the stock, which is now ready for the ring rolling operation itself. At this point the stock is called a preform.


5. The doughnut-shaped preform is slipped over the ID roll shown here from an "above" view.


6. A side view of the ring mill and preform workpiece, which squeezes it against the OD roll which imparts rotary action...

7. ...resulting in a thinning of the section and correspondence increase in the diameter of the ring. Once off the ring mill, the ring is then ready for secondary operations such as close tolerance sizing, parting, heat treatment and test/inspection..


design do not stop !
BUDS'



Wednesday, January 14, 2009

11 cara jitu untuk membuat cewek jatuh cinta

:) Wah pasti kalian semua heran katanya blog ini untuk diskusi ilmiah ato sharing knowledge tapi kenapa sekarang kok tips untuk membuat para kaum hawa jatuh cinta pada kalian kaum adam. Sebenarnya gini ceritanya saya liat di Google yang ngindex blog saya dalam Keyword berikut "cara membuat". Heran juga padahal ga ada hubungannya sama sekali dengan kata-kata tersebut.yah mungkin inilah takdir kalo Blog ini Blog Paling keren..heheh2X guaya thok.
Setelah saya pikir-pikir dan walking-walking aq nemuin sebuah situs
PakPOS .
Yang postingannya tentang 10 cara buat cewek takluk. Kemudian aku tinggal nambahin 1 poin ajah.ya gpp lah..Tapi saya ga jamin juga loh kalo tips dan trik bikin cewek suka kita bisa berhasil. Kalo aq sih ga pake cara itu. Pake cara sendiri aja. Mau ada cewek kecantol ato enggak yah ga papa. Saya posting dan copy paste ilmu ini hanya untuk para visitor dan pengunjung blog saya ini
. Langsung aja deh ga usah berbelit belit akan saya sharing cara menaklukkan cewek dari web yang saya temukan alias web nya
PakPOS .

1. Sebagai cowok kita harus Gentle dan Jujur.
(Kalo aq siy jujurnya udah Gentle nya belom)
2. Tak Banyak Menilai Cewek.
( Waduh kayak ujian fisika,matematika,kimia ??? nilaiku jelek-jelek)
3. Tidak mengikat.
(mengikat apa yah ini maksudnya ?? ga membatasi pergaulan dia ??? tapi kalo direbut cowok lain gimana ??? )
4. Dengarkan bila dia cerita.
(Asal Jangan cerita si kancil nyolong timun aja)
5. Banyak Senyum.
(Wah Smiley terus nih aq pasang muka cakep terus deh)
6. Jadi Yang Terbaik.
( terbaik cuma dalam satu hal juga gpp.. )
7. Tidak memaksa.
Maksudnya ini tidak memaksa diri kita cepe-cepet nembak cewek target kita. Usahakan kita sabar nunggu waktu yang tepat
8. Jual Mahal Sedikit.
Ada hubungannya dengan sama no 7 kita. Meskipun kita tahu dia suka kita tapi agak jaim dikit lah jangan asal sruduk aja.
9. Biarkan Dia Menebak-Nebak.
Maksudnya biar dia nebak kita suka ama mereka ga yah ?? (Wadah aq selalu salah tebak terus dikiranya suka ternyata nganggap teman doang :( .Klo cewek biasanya udah tahu kita suka tapi diem aja pokoknya cinta pertama banget deh alias Sunny ..Sunny Kalo dah gitu nangis deh :( )
10. Jangan Terlalu Akrab
Maksudnya jangan sampai kamu dianggap teman oleh cewek itu. ( wah aq ga setuju nih soalnya tak kenal maka tak sayang.Yah jadi temennya aja aq dah senang asal jangan sampai dia punya pacar dan aq jadi curhatan tentang pacar dia :( sedih banget deh klo dah gitu)
11. Lakukan sekarang juga. jgn takut mencoba

pengen lu, jomblo seumur hidup? gak kan..??!



design do not stop !

BUDS'


Sunday, January 11, 2009

Pembuatan Ban Radial

Berikut saya postingkan entri pertama saya. Semoga menjadi awal yang bagus bagi kita dalam sharing ilmu, khususnya dibidang manufaktur.
Kedepannya saya pribadi berharap blog ini dapat berkembang dan menjadi tempat "nongkrong" yang asik bagi para engineer-engineer muda indonesia serta para blogger.
enjoy n learning now..

1.) Proses pembuatan ban radial dimulai dari berbagai macam bahan baku, zat warna, bahan kimia, 30 macam bahan karet, benang kawat, dan sebagainya. Proses dimulai dengan pencampuran dari bahan karet alam, minyak, bahan karbon, zat warna, anti-oksidan, akselerator dan bahan kimia lainnya, yang menghasilkan bahan yang disebut compound.
Campuran bahan-bahan tersebut dicampur dalam blender raksasa yang disebut mesin Banbury yang dioperasikan dalam suhu dan tekanan yang sangat tinggi. Bahan campuran berwarna hitam, lembek & panas tersebut diproses dalam blender raksasa secara berulang kali

2.) Kemudian setelah bahan campuran karet didinginkan, proses selanjunya adalah proses pemilahan berbagai macam compound menurut jenis dan peruntukannya, mulai dari compound untuk dinding-samping, telapak ban sampai bagian ban lainnya.
Dalam tahap ini juga dilakukan pelapisan benang dengan karet yang nantinya dipakai sebagai “tulang” ban. Dari gulungan benang raksasa tersebut seperti halnya bahan compound juga akan dibuat menjadi bermacam-macam bahan untuk keperluan setiap bagian dari ban. Beragam benang dipakai seperti polyester, rayon atau nylon. Pada umumnya untuk ban mobil penumpang sekarang telah memakai benang polyester.

3.) Komponen lainnya berbentuk gulungan disebut bead yang terbuat dari kawat baja high-tensile yang berfungsi sebagai pelindung ban terhadap tekanan velg mobil. Kawat baja tersebut dilapisi dengan karet kemudian digulung dan diikat untuk selanjuntnya disatukan dengan bagian ban lainnya.
Ban radial dibuat pada satu atau dua mesin untuk membuat innerliner atau lapisan karet sintentis khusus pada bagian dalam ban tipe tubeless yang berfungsi mencegah angin agar tidak dapat keluar.

4.) Selanjutnya proses pembuatan dua lapisan benang cord, dua lapisan karet Apex untuk melapisi bead dan sepasang lapisan chafer yang melindungi daerah bead terhadap tekanan velg mobil.
Bahan-bahan untuk ban radial tersebut akan disatukan secara teliti dan akurat didalam mesin tire building sebelum kemudian menuju ke mesin cetak atau mold.

5.) Pada proses pembuatan ban di bagian mesin tire bulding selanjutnya ditambahkan sabuk kawat baja yang berfungsi melapisi dan melindungi ban terhadap tusukan & benturan serta ban agar dapat menapak rata di permukaan jalan. Telapak ban adalah bagian terakhir yang kemudian disatukan dalam proses ini. Setelah kemudian mesin tire bulding akan menyatukan bagian bagian ban tersebut menjadi satu secara otomatis, maka jadilah ban yang belum di masak yang disebut green tire.

6.) Proses pembuatan ban berakhir di mesin cetak untuk dimasak atau yang yang disebut proses vulkanisasi. Proses ini akan mencetak pola telapak ban dan tulisan pada dinding-samping seperti nama ban & pembuat ban dan juga tulisan tulisan yang berkenaan dengan peraturan hukum.
Ban tersebut dimasak selama 8 sampai 25 menit dalam temperature lebih dari 150 derajat celcius tergantung dari ukuran ban. Setelah mesin cetak terbuka maka keluarlah ban jadi yang kemudian menuju conveyor panjang untuk proses pemeriksaan terakhir.

7.) Jika dalam pemeriksaan terakhir ditemukan kesalahan atau kerusakan maka ban tersebut akan ditolak. Beberapa kerusakan dapat ditemukan oleh para inspektor yang terlatih, sisa kerusakan lainnya akan ditemukan oleh mesin khusus.
Pemeriksaan tidak hanya dilakukan terhadap permukaan ban saja, beberapa ban akan dibawa menuju alat X-ray untuk diperiksa apakah ada kesalahan atau kerusakan pada bagian dalam ban. Selain itu, petugas quality control secara berkala akan memotong ban secara acak untuk diperiksa dan dipelajari setiap detil bagian ban untuk memastikan unsur performa, kenyamanan dan keamanannya.

8.) Itulah proses dimana semua bagian ban disatukan mulai dari telapak & dinding-samping ban, benang, dan kawat baja. Apapun itu, pada dasarnya bahan pokok ban adalah sama yaitu kawat baja, benang, karet ditambah oleh proses kerja keras, keseriusan, desain dan rekayasa yang matang.

Bahan Dasar Pembuatan Ban
Benang/kawat baja, nylon, aramid fiber, rayon, fiberglass, or polyester (biasanya bahan kombinasi, misalnya benang polyester pada lapisan ban dan kawat baja pada bagian sabuk baja dan bead yang umumnya terdapat pada ban mobil penumpang radial)

Karet alam dan sintetis (terdapat ratusan jenis karet/polimer)
Campuran kimia — Karbon black, silica, resin
Anti-degradants – antioksidan, ozonan, parafin wax
Adhesion promoters — cobalt salt, brass untuk kawat baja, resin dan benang
Curatives — cure accelerators, activators, sulfur
Processing aids — minyak, tackifier, peptizer, softener

Di satu ban ukuran populer 195/70R14 ban mobil penumpang untuk semua musim, mempunyai berat sekitar 8 kg yang terdiri dari :
2 kg . terdiri dari 30 jenis bahan karet sintetis
1.5 kg terdiri dari 8 jenis bahan karet alam
2 kg terdiri dari 8 jenis bahan karbon black
0.5 kg sabuk kawat baja
0.5 kg. benang polyester dan nylon
0.5 kg bead kawat baja
1.5 kg terdiri dari 40 jenis bahan kimia, minyak dan lain-lain.

Campuran umum antara bahan karet sintetis dan karet alam menurut jenis ban adalah :
Ban Mobil Penumpang 55% 45%
Ban Truk Kecil 50% 50%
Ban Mobil Balap 65% 35%
Ban Off-The-Road (giant/earthmover) 20% 80%


design do not stop
BUDS'